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Abstract

Background: Molecular hydrogen (H2) functions as an extensive protector against oxidative stress, inflammation
and allergic reaction in various biological models and clinical tests; however, its essential mechanisms remain
unknown. H2 directly reacts with the strong reactive nitrogen species peroxynitrite (ONOO-) as well as hydroxyl
radicals (•OH), but not with nitric oxide radical (NO•). We hypothesized that one of the H2 functions is caused by
reducing cellular ONOO-, which is generated by the rapid reaction of NO• with superoxides (•O2

-). To verify this
hypothesis, we examined whether H2 could restore cytotoxicity and transcriptional alterations induced by ONOO-

derived from NO• in chondrocytes.

Methods: We treated cultured chondrocytes from porcine hindlimb cartilage or from rat meniscus fibrecartilage
with a donor of NO•, S-nitroso-N-acetylpenicillamine (SNAP) in the presence or absence of H2. Chondrocyte viability
was determined using a LIVE/DEAD Viability/Cytotoxicity Kit. Gene expressions of the matrix proteins of cartilage
and the matrix metalloproteinases were analyzed by reverse transcriptase-coupled real-time PCR method.

Results: SNAP treatment increased the levels of nitrated proteins. H2 decreased the levels of the nitrated proteins,
and suppressed chondrocyte death. It is known that the matrix proteins of cartilage (including aggrecan and type
II collagen) and matrix metalloproteinases (such as MMP3 and MMP13) are down- and up-regulated by ONOO-,
respectively. H2 restoratively increased the gene expressions of aggrecan and type II collagen in the presence of
H2. Conversely, the gene expressions of MMP3 and MMP13 were restoratively down-regulated with H2. Thus, H2

acted to restore transcriptional alterations induced by ONOO-.

Conclusions: These results imply that one of the functions of H2 exhibits cytoprotective effects and transcriptional
alterations through reducing ONOO-. Moreover, novel pharmacological strategies aimed at selective removal of
ONOO- may represent a powerful method for preventive and therapeutic use of H2 for joint diseases.

Background
We have reported that molecular hydrogen (H2) has
potential as a novel antioxidant in preventive and thera-
peutic applications [1]. Furthermore, H2 exhibits not
only anti-oxidative stress effects [2,3], but also has var-
ious anti-inflammatory [4,5] and anti-allergic effects [6].
Since the publication of the first article on the biological

contribution of H2 in 2007, more than 80 articles
involved in H2 have been published to establish the
apparent activity of H2 from various medical aspects
[7-9].
H2 reacted with strong reactive oxygen/nitrogen spe-

cies including hydroxyl radical and peroxinitrite (ONOO-

) in cell-free reactions and protected cultured cells
depending upon the decrease of hydroxyl radicals (•OH)
[1]. Subsequent and recent experiments including ours
indicated that a small amount of hydrogen is also effec-
tive against various stimuli [8,9]. When model animals
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consumed H2 by drinking water with dissolved H2, a
small amount of H2 was extensively effective [10-12];
however, it may be difficult to explain that direct reduc-
tion of •OH by a very small amount of H2 reveals all the
functions of H2, because the saturated level of H2 is only
0.8 mM and the dwelling time of •OH is very short in
the body [11,13]. In fact, drinking 0.04 or 0.08 mM H2

was shown to be effective [14,15]. Although we have
recently shown that H2 can be accumulated with hepatic
glycogen, it is unlikely that the amount of H2 is sufficient
to exhibit all of its functions [15].
Moreover, H2 regulated various gene expressions;

however, there is no evidence that H2 directly reacts
with factors involved in transcriptional regulation
including FGF21 [15], inflammatory cytokines [11],
HMGB1 [16], and HO-1 [17]. It remains unclear
whether such regulations are the cause or consequence
of the effects against oxidative stress. Moreover, the pri-
mary molecular target of H2 remains unknown.
ONOO- is produced by the rapid reaction of nitric

monoxide (NO•) with superoxide anion radicals (•O2
-)

[18,19]. We have shown that H2 reduces ONOO- as
well as •OH [1]. Different from •OH, ONOO- has a
longer lifespan and the potential to regulate gene
expression through nitration of target proteins [20,21].
Thus, we hypothesized that one of the H2 functions is
caused by reducing cellular ONOO-.
Here, to verify this hypothesis, we examined protective

and regulatory effects of H2 on NO•-derived oxidative
stress to chondrocytes. We found that H2 protected
chondrocytes from oxidative stress, and alternated gene
expressions, contrary to the manner of transcriptional
regulation by ONOO-. This study implies that at least
one of the H2 functions is responsible for the reduction
of ONOO-.

Methods
Cartilage slice culture
A fresh hindlimb of a slaughtered male seven-month-old
pig was purchased from Tokyo Shibaura Organ Co., Ltd.
(Minato-ku, Tokyo, Japan). There were no possible con-
taminant diseases. Cartilage from the healthy porcine
hindlimb (metatarsophalangeal joint) was cut into pieces
for culture (2 mm width × 7 mm length × full thick-
ness) as described previously [22]. Male Sprague-Dawley
rats of 10 weeks of age were purchased from Nippon
SLC (Hamamatsu, Shizuoka, Japan). Cartilage from the
meniscus of a rat was also sliced into pieces (full width
× full length × 0.5 mm thickness) for culture. Since the
meniscus structure is not uniform and the peripheral
part contains fewer chondrocytes, we used slices pre-
pared from the middle part of the meniscus.
The slices were randomly divided into two experimen-

tal groups and incubated at 37°C in Dulbecco’s modified

Eagle’s medium (DMEM)/Ham F-12 mixed medium
(Gibco Invitrogen, Grand Island, NY, USA) supplemen-
ted with 10% fetal calf serum (FBS), penicillin (100 U/
ml), and streptomycin (100 μg/ml).
The care and use of laboratory animals were in accor-

dance with the NIH guidelines. This study was approved
by the Animal Care and Use Committee of Nippon
Medical School (Bunkyo-ku, Tokyo, Japan).

Hydrogen treatment
We prepared H2-dissolved culture medium as described
previously [1]. In brief, we dissolved H2 in the medium
by bubbling H2 gas to the saturated level. We also dis-
solved O2 in a second medium by bubbling O2 gas, and
CO2 in a third medium by bubbling CO2 gas. We com-
bined these media to give a medium consisting of 75%
H2, 20% O2, 5% CO2 (vol/vol/vol). We then cultured the
cartilage slices in a closed culture flask filled with the
medium. Control medium contained 75% N2 instead of
H2. The H2 concentration was maintained for 24 hr as
described [15].

Cell death assay
The cartilage slices were incubated for 12 - 80 hr in
medium containing 0.3 - 3 mM S-nitroso-N-acetyl-D, L-
penicillamine (SNAP) (Cayman Chemical, Ann Arbor,
MI, USA) in the presence or absence of H2 [22,23].
Chondrocyte viability was determined using a LIVE/
DEAD Viability/Cytotoxicity Kit (Molecular Probes,
Eugene, OR, USA). Living, dying and dead cells were
stained with green, yellow (combination of green and
red) and red fluorescence, respectively, and visualized
with a confocal scanning laser microscope (FLUOVIEW
FV300; Olympus, Tokyo, Japan).

Immunohistochemical staining
Frozen sections of 6 μm-thick were fixed with 10% for-
malin and treated with 0.3% hydrogen peroxide in
methanol to inhibit endogenous peroxidase activity. The
sections were incubated with 10% Block Ace (DS
Pharma Biomedical Co., Ltd., Suita, Osaka, Japan) in
phosphate buffered saline (PBS) and then incubated
with anti-nitrotyrosine monoclonal antibody (Calbio-
chem, San Diego, CA, USA; 1:100 dilution with 10%
Block Ace in PBS) overnight at 4°C. Nitrotyrosine resi-
dues were visualized with DAB using horseradish perox-
idase (HRP)-conjugated secondary antibody (Santa Cruz
Biotechnology, Inc. Santa Cruz, CA, USA) and a Histo-
Mark ORANGE kit (KPL, Gaithersburg, MD, USA). As
a positive control for staining, we used sections from
cartilage treated with 1 mM 3-morpholinosydnonimine
(SIN-1) (Sigma-Aldrich, St. Louis, MO, USA), which
generates both superoxide anion and nitric oxide that
spontaneously produce peroxynitrite. The positive area
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was estimated using the Image J program (version 1.41;
National Institutes of Health, Bethesda, MD, USA) from
four sections for each group.

RNA isolation and RT-PCR
Total RNA was isolated from the cartilage using an
RNeasy Mini kit (QIAGEN, Valencia, CA, USA). Com-
plementary DNA synthesized by SuperScript II Reverse
Transcriptase (Invitrogen, Carlsbad, CA, USA) was ana-
lyzed by quantitative PCR using the Thermal Cycler
Dice Real Time System TP800 (TAKARA BIO Inc.,
Otsu, Shiga, Japan). All samples were normalized to gly-
ceraldehyde 3-phosphate dehydrogenase (GAPDH)
expression. Primer and probe sequences for each PCR
are listed in Table 1.

Immunoblot analysis
Specimens were homogenized with a micro-homogeni-
zer in SDS (sodium dodecyl sulfate) buffer (1% SDS in
PBS), and then centrifuged at 10,000 g for 10 min at 4°
C to remove debris. Supernatants were subjected to
SDS-PAGE (SDS-polyacrylamide gel electrophoresis) fol-
lowed by electrotransfer onto a PVDF membrane. The
blotted membranes were blocked with Block Ace (DS
Pharma Biomedical Co., Ltd.) and incubated with anti-
aggrecan polyclonal antibody (Abcam, Cambridge, UK;
1:1,000 dilution), anti-MMP13 polyclonal antibody
(Santa Cruz Biotechnology, Inc. 1:1,000 dilution) or
anti-actin monoclonal antibody (Sigma-Aldrich; 1:500
dilution) overnight at 4°C. Each band was visualized
with horseradish peroxidase (HRP)-conjugated second-
ary antibody (Santa Cruz Biotechnology, Inc.) and an
ECL plus Western blotting detection system (GE
Healthcare, Piscataway, NJ, USA).

Statistical analysis
We performed statistical analysis using StatView soft-
ware (SAS Institute) by applying an unpaired two-tailed
Student’s t-test and ANOVA followed by Fisher’s exact
test, as described previously [1]. Differences were con-
sidered significant at p < 0.05.

Results
H2 protects chondrocytes of hyaline and fibrecartilage
from cell death
It is reported that cultured chondrocytes are sensitive to
exposure to SNAP, a donor of NO• [22] and that H2 exhi-
bits no direct reaction with NO• in cultured cells as well
as in a cell-free reaction. To verify the hypothesis that H2

protects cells by reducing ONOO-, we examined the effect
of H2 on cell death induced by SNAP by using hyaline car-
tilage slices from a porcine hindlimb metatarsophalangeal
joint as a target. Chondrocyte viability was determined
using a LIVE/DEAD Viability/Cytotoxicity Kit, which pro-
vides quantitative analyses of the proportion of live and
dead cells in a mixed population (Figure 1A). In living
cells, membrane-permeated calcein AM is cleaved by
esterases to yield cytoplasmic green fluorescence, and in
dead cells membrane-impermeable ethidium homodimer-
1 labels nucleic acids with red fluorescence. Dying cells,
whose membrane structure has been disrupted but still
have some esterase activity, were double stained as yellow.
We counted green, red and yellow cells for statistical ana-
lysis (Additional file 1: Table S1). Cell viability was calcu-
lated as the percentage of green cell numbers against total
cell numbers (Figure 1B). Significant protection of chon-
drocytes by H2 was observed in the treatment with 3 mM
SNAP for 12 hr (Figure 1A and 1B). More evident effects
were obtained with longer SNAP treatment (Figure 1B).
Next, we examined another type of cartilage, meniscus

fibrecartilage, isolated from rats instead of swine speci-
mens. Because it is easier to isolate swine than rat carti-
lage, we used swine cartilage for preliminary experiments;
however, for further analysis, cartilage from rats is more
suitable for RNA and protein analysis because genomic
databases and antibodies are available. Treatment with 1
mM SNAP induced cell death in a time-dependent man-
ner and H2 suppressed chondrocyte death at each time
point (Figure 2A and 2B, Additional file 2: Table S2). H2

significantly protected chondrocytes from death with var-
ious concentrations of SNAP treatment for 48 hr (Figure
2C, Additional file 3: Table S3). These results indicate that
H2 protects chondrocytes by stimuli derived from NO•,
although H2 has no potential to react with NO•.

H2 decreases nitrotyrosine in chondrocytes and matrix of
cartilage induced by SNAP
ONOO- is a strong modifier of nitration in proteins. To
confirm that H2 decreased ONOO- derived from NO•,

Table 1 Primers and probes for RT-PCR.

Gene Sequence

aggrecan F primer 5’-GACCAGGAGCAATGTGAGGAG-3’

R primer 5’-CTCGCGGTCGGGAAAGT-3’

probe 5’-CCAAGTTCCAGGGCCACTGTTATCGC-3’

type II collagen F primer 5’-TTGGAGAGACCATGAACGGC-3’

R primer 5’-TTAGCGGTGTTGGGAGCC-3’

probe 5’-CACTTCAGCTACGGCGACGGCAA-3’

MMP3 F primer 5’-TCCCAGGAAAATAGCTGAGAACTT-3’

R primer 5’-AAACCCAAATGCTTCAAAGACAG-3’

probe 5’-CCAGGCATTGGCACAAAGGTGGA-3’

MMP13 F primer 5’-TGGAGTTATGATGATGCTAACCAGAC-3’

R primer 5’-TGTCGCCAATTCCAGGGA-3’

probe 5’-TGGACAAAGACTATCCCCGCCTCATA
GAAG-3’

GAPDH F primer 5’-CATCACTGCCACCCAGAAGA-3’

R primer 5’-ATGTTCTGGGCAGCC-3’

probe 5’-TGGATGGCCCCTCTGGAAAGCTG-3’
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we examined levels of nitrotyrosine residues in cartilage
immunohistologically. In fact, NO• increased the levels
of nitrotyrosine, and H2 restored its increase (Figure 3).
Thus, H2 should decrease ONOO- derived from NO•.

H2 restores down-regulation of matrix expression and up-
regulation of matrix-metallo protease expression induced
by SNAP
It was also reported that ONOO- down-regulates gene
expressions of the cartilage matrix proteins including
aggrecan and type II collagen [24]. Conversely, levels of
matrix-metallo protease are known to be up-regulated by
ONOO- [24]. We then investigated the effect of H2 on
the expression of chondrocyte-specific matrix genes.

Isolated meniscus fibrecartilage was incubated in
DMEM/F-12 supplemented with 10% FBS with or with-
out 1 mM SNAP in the presence or absence of H2. The
levels of mRNA for the matrix proteins of type II col-
lagen and aggrecan core protein were quantified with
real-time PCR coupled with reverse transcription (Figure
4A and 4B). Indeed, SNAP down-regulated aggrecan and
collagen II gene expressions as expected. The decreased
gene expressions of the matrix proteins were significantly
restored by H2-dissolved culture medium, suggesting that
the decreased ONOO- restored the gene expression.
The possibility cannot be ruled out that oxidative

damage derived from SNAP may reduce any gene expres-
sions in a non-specific manner. We examined therefore
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Figure 1 Hydrogen protects chondrocytes of hyaline cartilage from cell death. (A) Porcine cartilage slices were incubated with 0, 1 or 3
mM SNAP in the presence or absence of hydrogen for 12 hr at 37°C. Cells were stained with a mixture of calcein AM (Live cell: green) and
ethidium homodimer (Dead cell: red) as described in Materials and methods. Scale bar: 100 μm. (B) Chondrocyte viability was determined by
counting green and red cells from three areas of each slice. Six slices were used for each experimental group. The slices were incubated with 0,
1 or 3 mM SNAP in the presence or absence of hydrogen for 12, 24 or 36 hr at 37°C. Data are the means ± SD (n = 6). *p < 0.05; **p < 0.01.
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the effect of H2 on catabolic enzyme genes induced by
SNAP, because levels of matrix-metallo protease are
known to be contradictorily up-regulated by ONOO- [24].
The levels of MMP-3 and MMP-13 mRNA were mea-
sured with quantitative real-time PCR after treatment with
SNAP with or without H2 (Figure 4D and 4E). Moreover,
the alterations of the aggrecan and MMP-13 proteins cor-
responded to their mRNA levels (Figure 4F). Thus, SNAP
up-regulated MMP-3 and MMP-13 gene expressions as
expected, whereas H2 significantly suppressed MMP gene
expressions, suggesting that H2 restored the increased
expressions by decreasing ONOO-.

Discussion
Joint diseases including osteoarthritis (OA) and rheuma-
toid arthritis (RA) are the most common disabling dis-
eases, especially among elderly people. Arthritis is a
degenerative disease involving abnormalities in

chondrocytes, articular cartilage and other joint tissue,
and is mediated by a number of underlying biochemical
and physical stimuli [25,26]. Recent studies revealed that
oxidative stress plays a leading role in the initiation and
progression of the disease process [27,28]. As a joint dis-
ease model of aged patients, we stimulated chondrocytes
with oxidative stress derived from NO•. The cartilage
consists mostly of the extracellular matrix, which is
synthesized by chondrocytes [28,29]. The extracellular
matrix is composed of collagens and proteoglycans that
are responsible for the important compressive and ten-
sile properties of cartilage [28].
The major oxidative stress generated by chondrocytes

is one of the most powerful oxidants ONOO-, which
was produced by the rapid reaction of NO• with •O2

-

[18,19]. At an earlier stage, NO• has been considered as
the primary inducer of chondrocyte death [30]; however,
it has been revealed that the oxidative strength of NO•
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Figure 2 Hydrogen protects chondrocytes of fibrocartilages from cell death. (A) Meniscus fibrocartilages from SD rats was incubated with 1
mM SNAP in the presence or absence of hydrogen for 0, 6, 20, 48, or 80 hr at 37°C. Cells were stained with calcein AM (Live cell: green) and
ethidium homodimer (Dead cell: red) as described in Materials and methods. Scale bar: 40 μm. (B) Chondrocyte viability was determined by
counting green and red cells from three regions of each slice. Six slices were used for each experimental group. The slices were incubated with
1 mM SNAP in the presence or absence of hydrogen for the indicated periods at 37°C. Data are the means ± SD (n = 6). *p < 0.05; ***p < 0.001.
(C) The slices were incubated with 0, 0.3, 1, or 3 mM SNAP in the presence or absence of hydrogen for 48 hr at 37°C. Data are the means ± SD
(n = 6). *p < 0.05; ***p < 0.001.
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is not sufficient to initiate cell death [31,32]. A series of
experiments have indicated that the major cytotoxicity
attributed to NO• is rather due to ONOO- [20,33].
Increased ONOO- formation has been observed in cartilage
and subchondral bone in rodent models [34-36] and in car-
tilage in OA and RA patients [37-39]. ONOO- induces cell
death and regulates the decreased expression of collagens
and proteoglycans and increased matrix metallo protei-
nases in chondrocytes, resulting in matrix degradation
[24,40]. Thus, chondrocyte is a suitable target for investing
the effect of H2 regarding ONOO- in this study.

In this study, we show that H2 protected chondrocytes
from death induced by SNAP. SNAP is a donor of NO•;
however, NO• has no strong toxicity itself and H2 has
no potential to reduce NO•. Our previous study demon-
strated that H2 reduces ONOO- in a cell-free system
[1]. Thus, we speculate that H2 would protect SNAP-
treated chondrocytes by decreasing ONOO-. More
importantly, it has been reported that drinking hydrogen
water suppress the nitration of kidney proteins, although
H2 received from hydrogen water remained for only
short period in the organ (less than 5 min) [11]. In this
study, we have shown that H2 in medium suppress the
nitration of the chondrocyte proteins (Figure 3). Thus, it
is possible that even a very small amount of H2 exhibits
anti-oxidative effects by reducing ONOO- in many
situations.
Several laboratories including ours have reported that

H2 altered gene expressions involved in inflammation or
energy metabolism when animals drank hydrogen water
[15,17]; however, it is an open question why H2 alters
gene expressions, because there is no evidence that H2

directly influences gene expressions. On the other hand,
ONOO- has the potential to regulate gene expressions
through the nitration of factors involved in transcrip-
tional regulation [20]. As mentioned above, drinking
hydrogen water suppresses the nitration of proteins;
thus, it is possible that the very small amount of H2

consumed by drinking hydrogen water influences nitra-
tion in in vivo experiments and results in regulatory as
well as anti-oxidative effects [11]. These results agree
with the present finding that H2 suppressed the nitra-
tion of proteins.
Taken together, this study implies that one of the H2

functions, including transcriptional alterations, is caused
through reducing ONOO- derived from NO•.
Novel pharmacological strategies aimed at selective

removal of ONOO- may represent a powerful method
for preventive and therapeutic use of H2 for joint dis-
eases. Cartilage has no blood vessels and nutrients are
supplied through fluid. Since H2 has a great advantage
to rapidly diffuse into tissues even without blood flow
[41,42], it may be useful to prevent joint diseases by
reducing oxidative stress and by suppressing the
decrease in matrix proteins and inhibiting degradation
by proteinases.

Conclusions
This study implies that one of the H2 functions, includ-
ing transcriptional alterations, is caused through redu-
cing ONOO- derived from NO•. Novel pharmacological
strategies aimed at selective removal of ONOO- may
represent a powerful method for preventive and thera-
peutic use of H2 for joint diseases.
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Figure 3 Hydrogen decreases nitrotyrosine in chondrocytes
and cartilage matrix. (A) Meniscus fibrocartilage from SD rats was
incubated with 1 mM SNAP in the presence or absence of
hydrogen for 3 hr at 37°C. Frozen sections were stained with anti-
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Additional material

Additional file 1: Table S1 - Live, dying, and dead cell numbers of
hyaline cartilage.

Additional file 2: Table S2 - Live, dying, and dead cell numbers of
fibrocartilages treated with 1 mM SNAP.

Additional file 3: Table S3 - Live, dying, and dead cell numbers of
fibrocartilages treated with various concentration of SNAP for 48
hr.
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Figure 4 Hydrogen alters mRNA and protein expressions of matrix proteins and matrix-metalloproteases (MMPs). Meniscus
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were analyzed by real-time PCR coupled with reverse transcription. Data are the mean ± SD (n = 4). *p < 0.05; **p < 0.01. (F) Total protein was
extracted from 20 hr-incubated cartilage and the expression levels of aggrecan, MMP13 and actin were analyzed by immunoblotting.
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